Spatial Transcriptomics Revealed Alzheimer’s Disease Associated Molecular Markers in Parvalbumin Interneurons.


Updated on October 07, 2024

Contents

  1. Introduction
  2. Materials
  3. Methods
  4. Results
  5. Discussion
  6. Data Availability
  7. Code Availability
  8. References
  9. Abbreviations

Color key


 

Introduction

 

Materials

  1. 5xFAD transgenic (TG) and wild-type (WT) mice
  2. Spatial transcriptomics datasets
    1. [GeoMx] Discovery cohort
      1. Sample, N=7:
        • Four TG-female mice
        • Three WT-female mice
      2. Platform: Nanostring GeoMx Digital Spatial Profiler (DSP)
      3. Panel: Whole Transcriptome Atlas (WTA)
      4. Segment, N=4:
        • PV (purple, interneurons)
        • NeuN (green, neurons)
        • Amyloid (red)
        • TN (triple negative)
      5. ROI (Region of interest): 14
      6. AOI (Area of illumination): 46

    2. [Xenium] Validation cohort
      1. Sample, (consecutive sections): N=6:
        • Three TG-female mice
        • Three WT-female mice
      2. Platform: 10X Genomics Xenium In Situ
      3. Panel: 247 genes
      4. FOV (Field of view): 349
      5. Number of cells: 303,158 cells

  3. Number of samples:
    1. PlatformTGWTTotal
      GeoMx437
      Xenium336
      Total7613


  4. Sample naming convention for GeoMx DSP data
    1. Group|No|Sex - Segment - ROI
    2. Group: [TG | WT]
    3. No (moude model ID): as is
    4. Sex: [M | F]
    5. Segment: [PV | NeuN | Amyloid | TN]
    6. ROI: three-digit number
    7. Example: TG1M-PV-010
 

Methods

  1. Non-negative Matix Factorization (NMF) Lee and Seung (1999)
  2. InSituType Danaher et al. (2022)
  3. SOTK (Spatial Omics Toolkit): Select the best rank from NMF based on correlation network in a data-driven way
 

Results

  1. Preprocessing, QC, and XeniumRanger

  2. [GeoMx] Normalization

  3. [GeoMx] Identify Interneuron- and Neuron-specific genes

  4. [GeoMx] Feature selection
    • Selects a subset of relevant features while keeping the original feature space intact
    • Profiles often too big for downstream analysis
    • Highly variable genes, N=2000:
      1. Coefficient of variation < 0.01
      2. Order by standard deviation

  5. [GeoMx] Transcriptome deconvolution using NMF

  6. [GeoMx] Identify overrepresented metagenes

  7. [GeoMx] Select an optimal Rank from NMF using SOTK

  8. [GeoMx] Metagene functional annotations

  9. [GeoMx] Variability among samples


  10. [Xenium] Regions of Interest (ROIs)

  11. [Xenium and GeoMx] Correlation between and across consecutive sections in RSC
    1. between sections:
      1. WT1F
      2. WT2F
      3. WT3F
      4. TG2F
      5. TG3F
      6. TG4F
    2. across sections:
      1. PV-GeoMx and Xenium
      2. NeuN-GeoMx and Xenium

  12. [Xenium] Unsupervised clustering using k-means clustering

  13. [Xenium] Deconvolution using NMF results

  14. [Xenium] t-distributed Stochastic Neighbor Embedding (tSNE)

  15. [Xenium] Differential expression analysis
 

Discussion/Limitations

 

Data Availability

 

Code Availability

 

References

 

Abbreviations

    AOI, Area of illumination
    DSP, digital spatial profiler
    ENT, entorhinal cortex
    NMF, non-negative matrix factorization
    ROI, region of interest
    RSC, retrosplenial cortex
    SD, standard deviation
    SUB, subiculum
    TG, transgenic
    VIS, visual cortex
    WT, wild-type
    WTA, whole transcriptome atlas
    QC, quality check/control